
UML REFERENCE CARD

© 1998 Allen I. Holub. All Rights Reserved.

Available from <http://www.holub.com>.

Static Model Diagrams

Packages

• C++ namespace.
• Group together functionally-similar classes.
• Derived classes need not be in the same package.
• Packages can nest. Outer packages are sometimes

called domains. (In the diagram, “Tools” is arguably
an outer package, not a domain).

• Package name is part of the class name (e.g. given the
class fred in the flintstone package, the fully-qualified
class name is flintstone.fred).

• Generally needed when entire static-model won’t fit
on one sheet.

Classes (Box contains three compartments)

1. The name compartment (required) contains the class
name and other documentation-related information:

E.g.:
 Some_class «abstract»
 { author: George Jetson
 modified: 10/6/2999
 checked_out: y
 }
• Guillemets identify stereotypes. E.g.: «static»,

«abstract» «JavaBean». Can use graphic instead of
word.

• Access privileges (see below) can precede name.
• Inner (nested) classes identify outer class as prefix

of class name: (Outer.Inner or Outer::Inner).
2. The attributes compartment (optional):

• During Analysis: identify the attributes (i.e. defin-
ing characteristics) of the object.

• During Design: identify a relationship to a stock
class.
This:

is a more compact (and less informative) version of
this:

Everything, here, is private. Always. Period.
3. The operations compartment (optional) contains

method definitions. Use implementation-language
syntax, except for access privileges:

• Abstract operations (C++ virtual, Java non-final)
indicated by italics (or underline).

• Boldface operation names are easier to read.

If attributes and operations are both omitted, a more com-
plete definition is assumed to be on another sheet.

1Java, unfortunately, defaults to “package” access when no modifier is present. In my
“flavor” of UML, a missing access privilege means “public”.

Associations (relationships between classes)

• Associated classes are connected by lines.
• The relationship is identified, if necessary, with a < or

> to indicate direction (or use solid arrowheads).
• The role that a class plays in the relationship is identi-

fied on that class's side of the line.
• Stereotypes (like «friend») are appropriate.
• Unidirectional message flow can be indicated by an

arrow (but is implicit in situations where there is only
one role):

• Cardinality:

• Example:

class Company
{

 private Employee[] peon = new Employee[n];

 public void give_me_a_raise(Employee e) { ... }
}

class Employee
{

 private Company employer;
 private Employee boss;

 private Vector flunkies = new Vector();

 public void you_re_fired() { ... }
}

(A Java Vector is a variable-length array. In this case it
will hold Employee objects)

Implementation Inheritance

Outline arrows identify derivation relationships: extends,
implements, is-a, has-properties-of, etc. Variations include:

Interface Inheritance

In C++, an interface is a class containing nothing but pure
virtual methods. Java supports them directly (c.f. “abstract
class,” which can contain method and field definitions in
addition to the abstract declarations.)

My extension to UML: rounded corners identify interfaces.
If the full interface specification is in some other diagram, I
use:

Strict UML uses the «interface» stereotype in the name
compartment of a standard class box:

Interfaces contain no attributes, so the attribute compart-
ment is always empty.

Java.awt
com.hulub

Application

Database
Interfaces

Oracle

Sybase

Tools

Class name
Attributes:

Operations:

+ public

protected

- private

~ package (my extension to UML)1

Person

String name;

Person String

name

1 Usually omitted if 1:1

n Unknown at compile time, but bound.

0..1 (1..2 1..n)

1..* 1 or more

* 0 or more

1..* 1..*relationship
A’s role in B B’s role in AA B

Sender Receiver

Company

give_me_a_raise(Employee e)

Employee

you_re_fired()
1
employer peon

<works for 1..n
boss
1

1..* flunkies

SuperClass

- void concrete();
+ int override();

SubClass

+ int override();
+ int additional();

User

f() { x.operation() }

Iface Name

operation()

Implementer

operation()

relationship
x

UserNameImplementer

InterfaceName

«interface»
Operations

Aggregation (comprises)

• Destroying the “whole” does not destroy the parts.
• Cardinality is allowed.

Composition (has) relationship

• The parts are destroyed along with the whole.
• Doesn’t really exist in Java.
• In C++:

class Container
{

 Obj item1;

 Obj *item2;
 public:

 Whole() { item2 = new Obj; }

 ~Whole(){ delete item2; }
};

Constraint

• A constrained relationship requires some rule to be
applied (e.g. {ordered}). Often combined with aggre-
gation, composition, etc.

• In the case of {or}, only one of the indicated relation-
ships will exist at any given moment (a C++ union, or
reference to a base class).

• {subset} does the obvious.

• In official UML, put arbitrary constraints that affect
more than one relationship in a “comment” box, as
shown. I usually leave out the box.

Qualified Association

• Hash tables, associative arrays, etc.

class User

{

 // A Hashtable is an associative array, indexed
 // by some key and containing some value.

 private Hashtable bag = new HashTable();

 private void add(String key, Item value) {

 bag.put(key, value);
 }

}

Association Class

• Use when a class is required to define a relationship.
• Somewhere, an additional relationship is required to

show ownership. (The one between person and Ticket
in the current example).

Dynamic-Model (Sequence) Diagrams

Objects and Messages (new style)

• Top boxes represent objects, not classes. You may
optionally add “:class” to the name if desired.

• Vertical lines represent the objects “life line”, or exist-
ence.

• Broken lifeline indicates the object is inactive, a rect-
angle indicates the object is active.

• represent messages being sent.

• (optional if synchronous) represent method
return. (May label arrow with name/type of returned
object).

• Sending object’s class must have:
1. An association of some sort with the receiving
objects class.
2. The receiver-side class’s “role” must be the same as
the name of the receiving object.

Object Creation

• The new instance appears at end of creation message
arrow.

• Destruction is accomplished by terminating the lifeline
with a large X:

Conditions

• Message sent only if conditional expression is true.
• The cond_expr is typically expressed in the imple-

mentation language.

Loops (extension to UML)

• Don’t think loops, think what the loop is accomplish-
ing.

• Typically, you need to send some set of messages to
every element in some collection. Do this with every.

• You can get more elaborate (every receiver where x<y)
• The diagram above comes from:

and maps to the following code:

class sender_class

{
 receiver_class receiver[n];

 public do_it() {
 for(int i = 0; i < n; ++i)

 receiver[i].message();

 }

}

Arrow Styles for Messages

Asynchronous Callbacks

• Callback occurs while Sender is potentially executing
something else.

PartWhole

ItemContainer
role

Container
Item

Identity key()

{ordered}

role

Collection {or}

Container

Container

Comittee Person{subset}

member-of *

*

*

1 chair-of

Comittee Comittee

{person.employer ==
 Person.boss.employer}

0..1 *

boss peon

employee employer

* 0..1

User

add(String key,
 Item value)

key Itembag

Ticket

PersonAirline

Date when;
Seat where;
Airport to;
Airport from;

carrier passenger

<travels on

<buys

Sender Receiver

message()

message()

Sender

Receiver
new

Sender

Receiver
new

message()

Sender Receiver

[cond_expr] message()

Symbol Type Description

Simple Don’t care. Usually read as the
same as synchronous.

Synchronous Sender blocks until return.

Asynchronous Handler returns immediately and
both sender and receiver work
simultaneously.

Sender

Receiver

message()

Every

do_it()

sender_class

void do_it()

receiver_class

void message()
1 n

sender receiver

x

Sender Receiver

message()

callback()

